eQTL identification and mapping in the population isolate of Norfolk Island

Miles Benton

Genomics Research Centre, Griffith Health Institute

Genemappers
Port Douglas, Australia

26-29th August 2012

- Background
- 2 eQTL Mapping
- Other Findings
- 4 Acknowledgements

Background

- eQTL's and eQTL mapping

Background

- eQTL's and eQTL mapping
- Why are we doing this study?
- Use the unique genetic isolate of Norfolk Island to hone in on functionally relevant loci
- using gene expression and SNP assocication

Background

- eQTL's and eQTL mapping
- Why are we doing this study?
- Use the unique genetic isolate of Norfolk Island to hone in on functionally relevant loci
- using gene expression and SNP assocication

Background

- eQTL's and eQTL mapping
- Why are we doing this study?
- Use the unique genetic isolate of Norfolk Island to hone in on functionally relevant loci
- using gene expression and SNP assocication

Study Design

- Participants 330 NIHS individuals
 - Samples Blood (circulating lymphocytes)
 - $oldsymbol{0}$ mRNA extracted > cDNA > expression analysis
- Platforms
 - Expression: Illumina HT-12 beadarray
 - SNPs: Illumina 610quad

 \sim 48000 mRNA probes & \sim 590000 SNPs for 330 participants

Study Design

- Participants 330 NIHS individuals
 - Samples Blood (circulating lymphocytes)
 - mRNA extracted > cDNA > expression analysis
- Platforms:
 - Expression: Illumina HT-12 beadarray
 - SNPs: Illumina 610quad

 \sim 48000 mRNA probes & \sim 590000 SNPs for 330 participants

Study Design

- Participants 330 NIHS individuals
 - Samples Blood (circulating lymphocytes)
 - mRNA extracted > cDNA > expression analysis
- Platforms:
 - Expression: Illumina HT-12 beadarray
 - SNPs: Illumina 610quad

 \sim 48000 mRNA probes & \sim 590000 SNPs for 330 participants

 Background
 eQTL Mapping
 Other Findings
 Acknowledgements

 000
 0●0000
 00000
 0

Computational Genomics

7 / 18

- Normalised gene expression data (23000 transcripts)¹
- Heritability analysis (batched using GenABEL/R: Polygenic Model)
- Heritable transcripts GWAS using SNP se
 - mmscore function pedigree structure analysis
 - 2 study-wide significance for NI pop = 1.84×10^{-7}
 - 3 suggestive significance threshold = 1.0×10^{-5}
- A series of filters were designed to identify cis/trans eQTL's
 - SNP/CHR location, Chromosome quadrants
 - Graphical Filter Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles)

M Benton eQTL mapping in NI isolate 28/08/12

¹Göring et al., (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics

 Background
 eQTL Mapping
 Other Findings
 Acknowledgements

 000
 0●0000
 00000
 0

Computational Genomics

7 / 18

- Normalised gene expression data (23000 transcripts)¹
- Heritability analysis (batched using GenABEL/R: Polygenic Model)
- Heritable transcripts GWAS using SNP se
 - mmscore function pedigree structure analysis
 - ② study-wide significance for NI pop = 1.84×10^{-7}
 - 3 suggestive significance threshold = 1.0×10^{-5}
- A series of filters were designed to identify cis/trans eQTL's
 - SNP/CHR location, Chromosome quadrants
 - Graphical Filter Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles)

M Benton eQTL mapping in NI isolate 28/08/12

¹Göring et al., (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics

 Background
 eQTL Mapping
 Other Findings
 Acknowledgements

 000
 0●0000
 00000
 0

Computational Genomics

7 / 18

- Normalised gene expression data (23000 transcripts)¹
- Heritability analysis (batched using GenABEL/R: Polygenic Model)
- Heritable transcripts GWAS using SNP set
 - mmscore function pedigree structure analysis
 - **2** study-wide significance for NI pop = 1.84×10^{-7}
 - suggestive significance threshold = 1.0×10^{-5}
- A series of filters were designed to identify cis/trans eQTL's
 - SNP/CHR location, Chromosome guadrants
 - Graphical Filter Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles)

¹Göring et al., (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics

 Background
 eQTL Mapping
 Other Findings
 Acknowledgements

 000
 0●00000
 00000
 0

Computational Genomics

28/08/12

7 / 18

- Normalised gene expression data (23000 transcripts)¹
- Heritability analysis (batched using GenABEL/R: Polygenic Model)
- Heritable transcripts GWAS using SNP set
 - mmscore function pedigree structure analysis
 - 2 study-wide significance for NI pop = 1.84×10^{-7}
 - suggestive significance threshold = 1.0×10^{-5}
- A series of filters were designed to identify cis/trans eQTL's
 - SNP/CHR location, Chromosome quadrants
 - @ Graphical Filter Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles)

M Benton eQTL mapping in NI isolate

¹Göring et al., (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics

Expression Power Calculation

Estimation of power to detect significantly heritable transcripts in Norfolk Island pedigree was run in SOLAR

80% power to detect heritable transcripts above $H^2=0.3$

9 / 18

• H² analysis of n=23000 transcripts²

Distribution of significantly heritable transcripts (age & sex adjusted, n=1712)

 $^{^{2}}$ Max sig. $H^{2} = 0.84$ Min sig. $H^{2} = 0.15$

 Background
 eQTL Mapping
 Other Findings
 Acknowledgements

 000
 00000●0
 00000
 0

The NI eQTL map

 Background
 eQTL Mapping
 Other Findings
 Acknowledgements

 000
 00000●
 00000
 0

The NI eQTL map

 Background
 eQTL Mapping
 Other Findings
 Acknowledgements

 000
 00000●
 00000
 0

The NI eQTL map

12 / 18

Heritable eQTL's: Comparison

200 cis & 70 trans eQTL's identified at study wide sig.

	n	cis	trans	significance threshold
NIHS	330	200	70	1.84E-007
BSGS	852	1529	256	5.25E-012
San Antonio	1240	750	1072	LOD score >3

Background

Heritable eQTL's: Comparison

- Overlap of several top hits with other studies:
 - BSGS³: overlap 7 of there top 12 cis-eQTL results (genes: HLA-DRB1, HLA-DQB1, ERAP2, RPS26, CLEC12A, TUBB2A, PAM)
 - Some overlap with San Antonio Family Heart Study⁴ An overlap of 7 of the top 20 cis-eQTL results: (genes: UTS2, RPS26, TIMM10, LGALS2, RPL14, HLA-DRB3, HLA-DRB5)

³Powell et al., (2012) The Brisbane Systems Genetics Study: Genetical Genomics Meets Complex Trait Genetics. PLoS ONE

⁴Göring et al., (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics

• Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts:

 Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts:

 Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts:

 Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts:

- No SNP peaks, but potential genomewide SNP signature:
 - 3 locus SNP signature
 - 9 transcripts, 9 genes from 6 different chromosomes

Probe_ID	Gene	Chromosome	Top SNP p-value	eQTL
ILMN_1719256	CKS1B	1	1.65e-10	trans
ILMN_1675797	EPDR1	7	2.05e-09	trans
ILMN_1726720	NUSAP1	15	8.81e-11	trans
ILMN_1709634	CMBL	5	7.74e-09	trans
ILMN_1741133	NME1	17	1.28e-09	trans
ILMN_1786125	CCNA2	4	3.54e-06	trans
ILMN_1800197	MRPL36	5	3.64e-07	trans
ILMN_1728934	PRC1	15	2.39e-11	trans
ILMN_1663390	CDC20	1	4.34e-12	trans

 GATHER analysis suggests all 9 genes involved in possible cell division/mitosis pathway...

Conclusions & Future Directions

In conclusion...

- Identified a genomewide eQTL map in NI.
- 1712 expression transcripts were found to be significantly H²
- GWAS identified 200 cis & 70 trans eQTL (study wide threshold).
- potentially novel SNP/eQTL signatures have been identified.

Future Directions...

- More comprehensive meta-analysis of current eQTL maps/databases
- should facilitate the detection of novel (NI/population specific?) eQTL's
- linkage analysis with SOLAR (STR & SNP??) for comparison
- more comprehensive analysis of trans-acting eQTL's

We've identified a trans-eQTL mapping to a gene which associates with an obesity related phenotype (COMP3) with associated kidney dysfunction.

Conclusions & Future Directions

In conclusion...

- Identified a genomewide eQTL map in NI.
- 1712 expression transcripts were found to be significantly H²
- GWAS identified 200 cis & 70 trans eQTL (study wide threshold).
- potentially novel SNP/eQTL signatures have been identified.

Future Directions...

- More comprehensive meta-analysis of current eQTL maps/databases
- should facilitate the detection of novel (NI/population specific?) eQTL's
- linkage analysis with SOLAR (STR & SNP??) for comparison
- more comprehensive analysis of trans-acting eQTL's

We've identified a trans-eQTL mapping to a gene which associates with an obesity related phenotype (COMP3) with associated kidney dysfunction.

Conclusions & Future Directions

In conclusion...

- Identified a genomewide eQTL map in NI.
- 1712 expression transcripts were found to be significantly H²
- GWAS identified 200 cis & 70 trans eQTL (study wide threshold).
- potentially novel SNP/eQTL signatures have been identified.

Future Directions...

- More comprehensive meta-analysis of current eQTL maps/databases
- should facilitate the detection of novel (NI/population specific?) eQTL's
- linkage analysis with SOLAR (STR & SNP??) for comparison
- more comprehensive analysis of trans-acting eQTL's

We've identified a trans-eQTL mapping to a gene which associates with an obesity related phenotype (COMP3) with associated kidney dysfunction.

Acknowledgements

Project Leaders: Prof Lyn Griffiths, Dr Rod Lea

Co Supervisors: Dr Donia Macartney-Coxson, Dr Geoff Chambers

Texas Biomedical Research Institute: Melanie Carless, Claire Bellis, Matt Johnson, Harald Göring, Thomas Dyer, Jo Curran, John Blangero

Genomics Research Centre: Michelle Hanna, Dr Bridget Maher, Dr David Eccles

Funding: NHMRC, John Corbett (Scholarship)

Ethics: Griffith University Ethics Committee