eQTL identification and mapping in the population isolate of Norfolk Island #### Miles Benton Genomics Research Centre, Griffith Health Institute Genemappers Port Douglas, Australia 26-29th August 2012 - Background - 2 eQTL Mapping - Other Findings - 4 Acknowledgements Background - eQTL's and eQTL mapping Background - eQTL's and eQTL mapping - Why are we doing this study? - Use the unique genetic isolate of Norfolk Island to hone in on functionally relevant loci - using gene expression and SNP assocication Background - eQTL's and eQTL mapping - Why are we doing this study? - Use the unique genetic isolate of Norfolk Island to hone in on functionally relevant loci - using gene expression and SNP assocication Background - eQTL's and eQTL mapping - Why are we doing this study? - Use the unique genetic isolate of Norfolk Island to hone in on functionally relevant loci - using gene expression and SNP assocication # Study Design - Participants 330 NIHS individuals - Samples Blood (circulating lymphocytes) - $oldsymbol{0}$ mRNA extracted > cDNA > expression analysis - Platforms - Expression: Illumina HT-12 beadarray - SNPs: Illumina 610quad \sim 48000 mRNA probes & \sim 590000 SNPs for 330 participants # Study Design - Participants 330 NIHS individuals - Samples Blood (circulating lymphocytes) - mRNA extracted > cDNA > expression analysis - Platforms: - Expression: Illumina HT-12 beadarray - SNPs: Illumina 610quad \sim 48000 mRNA probes & \sim 590000 SNPs for 330 participants # Study Design - Participants 330 NIHS individuals - Samples Blood (circulating lymphocytes) - mRNA extracted > cDNA > expression analysis - Platforms: - Expression: Illumina HT-12 beadarray - SNPs: Illumina 610quad \sim 48000 mRNA probes & \sim 590000 SNPs for 330 participants Background eQTL Mapping Other Findings Acknowledgements 000 0●0000 00000 0 # Computational Genomics 7 / 18 - Normalised gene expression data (23000 transcripts)¹ - Heritability analysis (batched using GenABEL/R: Polygenic Model) - Heritable transcripts GWAS using SNP se - mmscore function pedigree structure analysis - 2 study-wide significance for NI pop = 1.84×10^{-7} - 3 suggestive significance threshold = 1.0×10^{-5} - A series of filters were designed to identify cis/trans eQTL's - SNP/CHR location, Chromosome quadrants - Graphical Filter Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles) M Benton eQTL mapping in NI isolate 28/08/12 ¹Göring et al., (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics Background eQTL Mapping Other Findings Acknowledgements 000 0●0000 00000 0 # Computational Genomics 7 / 18 - Normalised gene expression data (23000 transcripts)¹ - Heritability analysis (batched using GenABEL/R: Polygenic Model) - Heritable transcripts GWAS using SNP se - mmscore function pedigree structure analysis - ② study-wide significance for NI pop = 1.84×10^{-7} - 3 suggestive significance threshold = 1.0×10^{-5} - A series of filters were designed to identify cis/trans eQTL's - SNP/CHR location, Chromosome quadrants - Graphical Filter Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles) M Benton eQTL mapping in NI isolate 28/08/12 ¹Göring et al., (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics Background eQTL Mapping Other Findings Acknowledgements 000 0●0000 00000 0 # Computational Genomics 7 / 18 - Normalised gene expression data (23000 transcripts)¹ - Heritability analysis (batched using GenABEL/R: Polygenic Model) - Heritable transcripts GWAS using SNP set - mmscore function pedigree structure analysis - **2** study-wide significance for NI pop = 1.84×10^{-7} - suggestive significance threshold = 1.0×10^{-5} - A series of filters were designed to identify cis/trans eQTL's - SNP/CHR location, Chromosome guadrants - Graphical Filter Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles) ¹Göring et al., (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics Background eQTL Mapping Other Findings Acknowledgements 000 0●00000 00000 0 # Computational Genomics 28/08/12 7 / 18 - Normalised gene expression data (23000 transcripts)¹ - Heritability analysis (batched using GenABEL/R: Polygenic Model) - Heritable transcripts GWAS using SNP set - mmscore function pedigree structure analysis - 2 study-wide significance for NI pop = 1.84×10^{-7} - suggestive significance threshold = 1.0×10^{-5} - A series of filters were designed to identify cis/trans eQTL's - SNP/CHR location, Chromosome quadrants - @ Graphical Filter Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles) M Benton eQTL mapping in NI isolate ¹Göring et al., (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics # **Expression Power Calculation** Estimation of power to detect significantly heritable transcripts in Norfolk Island pedigree was run in SOLAR 80% power to detect heritable transcripts above $H^2=0.3$ 9 / 18 • H² analysis of n=23000 transcripts² #### Distribution of significantly heritable transcripts (age & sex adjusted, n=1712) $^{^{2}}$ Max sig. $H^{2} = 0.84$ Min sig. $H^{2} = 0.15$ Background eQTL Mapping Other Findings Acknowledgements 000 00000●0 00000 0 # The NI eQTL map Background eQTL Mapping Other Findings Acknowledgements 000 00000● 00000 0 # The NI eQTL map Background eQTL Mapping Other Findings Acknowledgements 000 00000● 00000 0 # The NI eQTL map 12 / 18 # Heritable eQTL's: Comparison 200 cis & 70 trans eQTL's identified at study wide sig. | | n | cis | trans | significance threshold | |-------------|------|------|-------|------------------------| | NIHS | 330 | 200 | 70 | 1.84E-007 | | BSGS | 852 | 1529 | 256 | 5.25E-012 | | San Antonio | 1240 | 750 | 1072 | LOD score >3 | Background # Heritable eQTL's: Comparison - Overlap of several top hits with other studies: - BSGS³: overlap 7 of there top 12 cis-eQTL results (genes: HLA-DRB1, HLA-DQB1, ERAP2, RPS26, CLEC12A, TUBB2A, PAM) - Some overlap with San Antonio Family Heart Study⁴ An overlap of 7 of the top 20 cis-eQTL results: (genes: UTS2, RPS26, TIMM10, LGALS2, RPL14, HLA-DRB3, HLA-DRB5) ³Powell et al., (2012) The Brisbane Systems Genetics Study: Genetical Genomics Meets Complex Trait Genetics. PLoS ONE ⁴Göring et al., (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics • Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts: Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts: Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts: Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts: - No SNP peaks, but potential genomewide SNP signature: - 3 locus SNP signature - 9 transcripts, 9 genes from 6 different chromosomes | Probe_ID | Gene | Chromosome | Top SNP p-value | eQTL | |--------------|--------|------------|-----------------|-------| | ILMN_1719256 | CKS1B | 1 | 1.65e-10 | trans | | ILMN_1675797 | EPDR1 | 7 | 2.05e-09 | trans | | ILMN_1726720 | NUSAP1 | 15 | 8.81e-11 | trans | | ILMN_1709634 | CMBL | 5 | 7.74e-09 | trans | | ILMN_1741133 | NME1 | 17 | 1.28e-09 | trans | | ILMN_1786125 | CCNA2 | 4 | 3.54e-06 | trans | | ILMN_1800197 | MRPL36 | 5 | 3.64e-07 | trans | | ILMN_1728934 | PRC1 | 15 | 2.39e-11 | trans | | ILMN_1663390 | CDC20 | 1 | 4.34e-12 | trans | GATHER analysis suggests all 9 genes involved in possible cell division/mitosis pathway... #### Conclusions & Future Directions #### In conclusion... - Identified a genomewide eQTL map in NI. - 1712 expression transcripts were found to be significantly H² - GWAS identified 200 cis & 70 trans eQTL (study wide threshold). - potentially novel SNP/eQTL signatures have been identified. #### Future Directions... - More comprehensive meta-analysis of current eQTL maps/databases - should facilitate the detection of novel (NI/population specific?) eQTL's - linkage analysis with SOLAR (STR & SNP??) for comparison - more comprehensive analysis of trans-acting eQTL's We've identified a trans-eQTL mapping to a gene which associates with an obesity related phenotype (COMP3) with associated kidney dysfunction. #### Conclusions & Future Directions #### In conclusion... - Identified a genomewide eQTL map in NI. - 1712 expression transcripts were found to be significantly H² - GWAS identified 200 cis & 70 trans eQTL (study wide threshold). - potentially novel SNP/eQTL signatures have been identified. #### Future Directions... - More comprehensive meta-analysis of current eQTL maps/databases - should facilitate the detection of novel (NI/population specific?) eQTL's - linkage analysis with SOLAR (STR & SNP??) for comparison - more comprehensive analysis of trans-acting eQTL's We've identified a trans-eQTL mapping to a gene which associates with an obesity related phenotype (COMP3) with associated kidney dysfunction. #### Conclusions & Future Directions #### In conclusion... - Identified a genomewide eQTL map in NI. - 1712 expression transcripts were found to be significantly H² - GWAS identified 200 cis & 70 trans eQTL (study wide threshold). - potentially novel SNP/eQTL signatures have been identified. #### Future Directions... - More comprehensive meta-analysis of current eQTL maps/databases - should facilitate the detection of novel (NI/population specific?) eQTL's - linkage analysis with SOLAR (STR & SNP??) for comparison - more comprehensive analysis of trans-acting eQTL's We've identified a trans-eQTL mapping to a gene which associates with an obesity related phenotype (COMP3) with associated kidney dysfunction. # Acknowledgements Project Leaders: Prof Lyn Griffiths, Dr Rod Lea Co Supervisors: Dr Donia Macartney-Coxson, Dr Geoff Chambers **Texas Biomedical Research Institute:** Melanie Carless, Claire Bellis, Matt Johnson, Harald Göring, Thomas Dyer, Jo Curran, John Blangero **Genomics Research Centre:** Michelle Hanna, Dr Bridget Maher, Dr David Eccles Funding: NHMRC, John Corbett (Scholarship) Ethics: Griffith University Ethics Committee